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Building an NCAA men’s basketball predictive model and quantifying its
success

1 Introduction

Each March, more than an estimated 50 million Americans fill out a bracket

for the National Collegiate Athletic Association (NCAA) men’s Division 1

basketball tournament (Barra, 2014). While paid entry into tournament pools

is technically outlawed, prosecution has proved rare and ineffective; an esti-

mated $2.5 billion was illegally wagered on the tournament in 2012 (Tsu, 2014,

Boudway, 2014).

Free tournament pools are legal, however, and Kaggle, a website that

organizes free analytics and modeling contests, hosted its first college basket-

ball competition in the early months of 2014. Dubbed the ‘March Machine

Learning Mania’ contest, and henceforth simply referred to as the Kaggle con-

test, the competition drew more than 400 submissions, each competing for

a grand prize of $15,000, which was sponsored by Intel. We submitted two

entries, detailed in Section 3, one of which earned first place in this year’s

contest.

This manuscript both describes our novel predictive models and quanti-

fies the possible benefits, with respect to contest standings, of having a strong

model. First, we describe our submission, building on themes first suggested

by Carlin (1996) by merging information from the Las Vegas point spread

with team-based possession metrics. The success of our entry reinforces long-

standing themes of predictive modeling, including the benefits of combining

http://de.arxiv.org/abs/1412.0248v1


multiple predictive tools and the importance of using the best possible data.

Next, we use simulations to estimate the fraction of our success which

can be attributed to chance and to skill, using different underlying sets of

probabilities for each conceivable 2014 tournament game. If one of our two

submissions contained the exact win probabilities, we estimate that submission

increased our chances of winning by about a factor of 50, relative to if the

contest winner were to have been randomly chosen. Despite this advantage,

due to the contest’s popularity, that submission would have had no more than

about a 50-50 chance of finishing in the top 10, even under the most optimal

of conditions.

This paper is laid out as follows. Section 2 describes the data, meth-

ods, and scoring systems pertinent to predicting college basketball outcomes.

Section 3 details our submission, and in Section 4, we present simulations with

the hope of quantifying the proportions of our success which were due to skill

and chance. Section 5 summarizes and concludes.

2 NCAA tournament modeling

2.1 Data selection

Two easily accessible sets of predictors for NCAA basketball tournament out-

comes are information from prior tournaments and results from regular season

competition. Regular season data would generally include information like

each game’s home team, away team, location, and the final score. For tour-

nament games, additional information would include each team’s seed (No. 1



to No. 16), region, and the distance from each school’s campus to the game

location.

The specific viability of using team seed to predict tournament success

has been examined extensively; see, for example, Schwertman, Schenk, and

Holbrook (1996) and Boulier and Stekler (1999). In place of team seeds, which

are approximate categorizations of team strengths based mostly on perceived

talent, we supplemented regular season data with two types of information that

we thought would be more relevant towards predicting tournament outcomes:

(1) the Las Vegas point spread and (2) team efficiency metrics.

2.1.1 The Las Vegas point spread

One pre-game measurement available for the majority of Division 1 men’s

college basketball games over the last several seasons is the Las Vegas point

spread. This number provides the predicted difference in total points scored

between the visiting and the home team; a spread of -5.5, for example, implies

that the home team is favored to win by 5.5 points. To win a wager placed

on a 5.5 point favorite, one would need that squad to win by six points or

more. Meanwhile, a bet on the underdog at that same point spread would win

either if the underdog loses by 5 points or fewer, thereby covering the spread,

or if the underdog outright wins. In principal, the point spread accounts for

all pre-game factors which might determine the game’s outcome, including

relative team strength, injuries, and location.

Rules of efficient gambling markets imply that, over the long run, it is

nearly impossible to outperform the point spreads set by sportsbooks in Las



Vegas. A few landmark studies, including Harville (1980) and Stern (1991),

used data from National Football League (NFL) games to argue that, in gen-

eral, point spreads should act as the standards on which to judge any pre-game

predictions. While recent work has looked at gambling markets within, for ex-

ample, European soccer (Constantinou, Fenton, and Neil, 2013), the Women’s

National Basketball Association (Paul andWeinbach, 2014), the NFL (Nichols,

2014), and NCAA men’s football (Linna, Moore, Paul, and Weinbach, 2014),

most research into the efficiency of men’s college basketball markets was pro-

duced several years ago. Colquitt, Godwin, and Caudill (2001), for example,

argued that, overall, evidence of market inefficiencies in men’s college bas-

ketball were limited. These authors also found higher degrees of efficiency

in betting markets among contests in which a higher amount of pre-game

information was available. Paul and Weinbach (2005) highlighted inefficien-

cies with respect to larger point spreads using men’s college basketball games

played between 1996-1997 and 2003-2004, and found that placing wagers on

heavy underdogs could be profitable. Lastly, Carlin (1996) modeled tourna-

ment outcomes from the 1994 NCAA season, finding that the point spread

was among the easiest and most useful predictors.

As a result of our relative confidence in the efficiency of men’s basketball

markets, we extracted the point spread from every Division 1 men’s basketball

contest since the 2002-2003 season using www.covers.com, and linked these

results to a spreadsheet with game results.



2.1.2 Efficiency metrics

One aspect lost in the final scores of basketball games is the concept of a pos-

session. Given that NCAA men’s teams have 35 seconds on each possession

with which to attempt a shot that hits the rim, the number of possessions for

each team in a 40-minute game can vary wildly, depending on how quickly

each squad shoots within each 35-second window. In the 2013-2014 season,

for example, Northwestern State led all of Division 1 with 79.3 possessions per

game, while Miami (Florida) ranked last of the 351 teams with 60.6 per game

(TeamRankings, 2014). As a result, it is not surprising that Northwestern

State scored 20.1 more points per game than Miami, given the large discrep-

ancy in each team’s number of opportunities (TeamRankings, 2014). As score

differentials will also be impacted by the number of possessions in a game, of-

fensive and defensive per-possession scoring rates may provide a greater insight

into team strength, relative to the game’s final score.

Several examples of possession-based metrics can be found on a pop-

ular blog developed by Ken Pomeroy (www.kenpom.com). Pomeroy provides

daily updated rankings of all Division 1 teams, using offensive and defensive

efficiency metrics that he adjusts for game location and opponent caliber. The

larger umbrella of possession-based statistics, of which Pomeroy’s metrics fall

under, are summarized by Kubatko, Oliver, Pelton, and Rosenbaum (2007).

Pomeroy’s website provides team-specific data for all seasons since

2001-2002. We extracted several different variables that we thought would

plausibly be associated with a game’s results, including a team’s overall rat-

ing and its possession-based offensive and defensive efficiencies. These metrics



provide a unique summary of team strength at each season; one downside,

however, is that the numbers that we extracted were calculated after tourna-

ment games, meaning that postseason outcomes were included. As a result,

fitting postseason outcomes using Pomeroy’s end-of-postseason numbers may

provide too optimistic a view of how well his numbers produced at the end of

the regular season would do. Given that there are many more regular season

games than postseason games, however, we anticipated that changes between a

team’s possession-based efficiency metrics, as judged at the end of the regular

season and at the end of the postseason, would be minimal. Relatedly, Kvam

and Sokol (2006) found that most of the variability in a team’s success dur-

ing the tournament could be explained by games leading up to mid-February,

implying that games at the end of the regular season do not have a dramatic

impact on evaluation metrics.

2.2 Contest requirements

Standard systems for scoring NCAA basketball tournament pools, including

those used in contests hosted online by ESPN (11 million participants in 2014)

and Yahoo (15 million), award points based on picking each tournament game

winner correctly, where picks are made prior to start of the tournament (ESPN,

2014, Yahoo, 2014). In these pools, there are no lost points for incorrect picks,

but it is impossible to pick a game correctly if you had previously eliminated

both participating teams in earlier rounds. The standard point allocation

ranges from 1 point per game to 32 points for picking the tournament winner,

or some function thereof, with successive rounds doubling in value. With the



final game worth 32 times each first round game, picking the eventual tour-

nament champion is more or less a prerequisite for a top finish. For example,

among roughly one million entries in one 2014 ESPN pool, the top 106 finishers

each correctly pegged the University of Connecticut as the champion (Pagels,

2014). In terms of measuring the best prognosticator of all tournament games,

the classic scoring system is inadequate, leading some to call for an updated

structure among the websites hosting these contests (Pagels, 2014); for more

on optimal strategies in standard pools, see Metrick (1996) and Breiter and

Carlin (1997).

Systems that classify games as ‘win’ or ‘lose’ fail to provide probabil-

ity predictions, and without probabilities, there is no information provided

regarding the strength of victory predictions. For example, a team predicted

to win with probability 0.99 by one system and 0.51 by another would both

yield a ‘win’ prediction, even though these are substantially different evalua-

tions. An alternative structure would submit a probability of victory for each

participating team in each contest. In the Kaggle contest, for example, each

participant’s submissions consisted of a 2278 x 2 file. The first column con-

tained numerical identifications for each pair of 2014 tournament qualifiers,

representing all possible games which could occur in the tournament. For sim-

plicity, we refer to these teams as Team 1 and Team 2. The second column

consisted of each submission’s estimated probability of Team 1 defeating Team

2. Alphabetically, the first possible match-up in the 2014 tournament pitted

the University of Albany (Team 1) against American University (Team 2); like

2213 of the other possible match-ups, however, this game was never played due



to the tournament’s single elimination bracket structure.

There were 433 total entries into the 2014 Kaggle contest, submitted by

248 unique teams. Each team was allowed up to 2 entries, with only the team’s

best score used in the overall standings. Let ŷij be the predicted probability

of Team 1 beating Team 2 in game i on submission j, where i = 1, ...2278

and j = 1, ..., 433, and let yi equal 1 if Team 1 beats Team 2 in game i and

0 otherwise. Each Kaggle submission j was judged using a log-loss function,

LogLossj, where, letting I(Zi = 1) be an indicator for whether or not game i

was played,

LogLossij = −

(

yi log(ŷij) + (1− yi) log(1− ŷij)

)

∗ I(Zi = 1) (1)

LogLossj =
1

∑

2278

i=1
I(Zi = 1)

2278
∑

i=1

[LogLossij] (2)

=
1

63

2278
∑

i=1

[LogLossij ] . (3)

Smaller log-loss scores are better, and the minimum log-loss score (i.e., picking

all games correctly with probability 1) is 0. Only the 63 games which were

eventually played counted towards the participants’ standing; i.e.,
∑

2278

i=1
I(Zi =

1) = 63.

There are several unique aspects of this scoring system. Most impor-

tantly, the probabilities that minimize the log-loss function are the same as the

probabilities that maximize the likelihood of a logistic regression function. As

a result, we begin our prediction modeling by focusing on logistic regression.

Further, all games are weighted equally, meaning that the tournament’s



first game counts as much towards the final standings as the championship

game. Finally, as each entry picks a probability associated with every possible

contest, prior picks do not prevent a submission from scoring points in future

games.

2.2.1 Predicting NCAA games under probability based scoring func-

tion

Despite the intuitiveness of a probability based scoring system, little research

has explored NCAA men’s basketball predictions based on the log-loss or re-

lated functions. In one example that we build on, Carlin (1996) supplemented

team-based computer ratings with pre-game spread information to improve

model performance on the log-loss function in predicting the 1994 college bas-

ketball tournament. This algorithm showed a better log-loss score when com-

pared to, among other methods, seed-based regression models and models

using computer ratings only. However, Carlin’s model was limited to com-

puter ratings based only on the final scores of regular season games, and not

on possession-based metrics, which are preferred for basketball analysis (Ku-

batko et al., 2007). Further, the application was restricted to the tournament’s

first four rounds in one season, and may not extrapolate to the final two rounds

or to other seasons.

Kvam and Sokol (2006) applied similar principles in using logistic re-

gression as the first step in developing a team ranking system prior to each

tournament and found that their rankings outperformed seed-based evaluation

systems. However, this proposal was more focused on picking game winners



than improving scoring under the log-loss function.

3 Model selection

Our submission was based on two unique sets of probabilities, ŷm1
= [ŷ1,m1

, ...ŷ2278,m1
]

and ŷm2
= [ŷ1,m2

, ...ŷ2278,m2
], generated using a point spread-based model (M1)

and an efficiency-based model (M2), respectively.

For M1, we used a logistic regression model with all Division 1 NCAA

men’s basketball games from the prior 12 seasons for which we had point spread

information. For game g, g = 1, ..., 65043, let yg be our outcome variable, a

binary indicator for whether or not the first team (Team 1) was victorious.

Our only covariate in M1 is the game’s point spread, spreadg, as shown in

Equation (4),

logit(Pr(yg = 1)) = β0 + β1 ∗ spreadg. (4)

We used the maximimum likelihood estimates of β0 and β1 from Equation (4),

β̂0,m1
and β̂1,m1

, to calculate ŷi,m1
for any i using spreadi, the point spread for

2014 tournament game i such that

ŷi,m1
= π̂i =

expβ̂0,m1
+β̂1,m1

∗spreadi

1 + expβ̂0,m1
+β̂1,m1

∗spreadi
. (5)

The actual point spread was available for the tournament’s first 32 games;

for the remaining 2246 contests, we predicted the game’s point spread using



a linear regression model with 2013-2014 game results.1 Of course, just 31

of these 2246 predicted point spreads would eventually be needed, given that

there are only 31 contests played in each tournament after the first round.

An efficiency model (M2) was built using logistic regression on game

outcomes, with seven team-based metrics for each of the game’s home and away

teams as covariates, along with an indicator for whether or not the game was

played at a neutral site. These covariates are shown in Table 1. Each team’s

rating represents its expected winning percentage against a league average

team (Pomeroy, 2012). Offensive efficiency is defined as points scored per

100 possessions, defensive efficiency as points allowed per 100 possessions, and

tempo as possessions per minute. Adjusted versions of offensive efficiency,

defensive efficiency, and tempo are also shown; these standardize efficiency

metrics to account for opposition quality, site of each game, and when each

game was played (Pomeroy, 2012).

We considered several different logistic regression models, using differ-

ent combinations and functions of the 15 variables in Table 1. Our training

data set, on which models were fit and initial parameters were estimated, con-

sisted of every regular season game held before March 1, using each of the

2002-2003 through 2012-2013 seasons. For our test data, on which we aver-

aged the log-loss function in Equation (1) and selected our variables for M2,

we used all contests, both regular season and postseason, played after March

1 in each of these respective regular seasons. We avoided only using the Divi-

sion 1 tournament outcomes as test data because only about 1% of a season’s

1This specific aspect of the model has been previously used for proprietary reasons, and

we are unfortunately not at liberty to share it.



Table 1: Team-based efficiency metrics

Variable Description Team
X1 Rating Home
X2 Rating Away
X3 Offensive Efficiency Home
X4 Offensive Efficiency Away
X5 Defensive Efficiency Home
X6 Defensive Efficiency Away
X7 Offensive Efficiency, Adjusted Home
X8 Offensive Efficiency, Adjusted Away
X9 Defensive Efficiency, Adjusted Home
X10 Defensive Efficiency, Adjusted Away
X11 Tempo Home
X12 Tempo Away
X13 Tempo, Adjusted Home
X14 Tempo, Adjusted Away
X15 Neutral N/A

contests are played during these postseason games. Given that March includes

conference tournament games, which are perhaps similar to those in the Divi-

sion 1 tournament, and our desire to increase the pool of test data, we chose

the earlier cutoff. Table 2 shows examples of the models we considered and

their LogLoss score averaged on the test data.

While not the complete set of the fits that we considered, Table 2 gives

an accurate portrayal of how we determined which variables to include. First,

given the improvement in the loss score from fits (a) to (b) and (c) to (d),

inclusion of X15, an indicator for if the game was played on a neutral court,

seemed automatic. Next, fit (f), which included the overall team metrics that

had been adjusted for opponent quality, provided a marked improvement over

the unadjusted team metrics in fit (e). Meanwhile, inclusion of overall team



Table 2: Model building results

Fit Variables LogLossˆ

(a) (X1 - X2) 0.509
(b) (X1 - X2), X15 0.496
(c) X1, X2 0.510
(d) X1, X2, X15 0.496
(e) X3, X4, X5, X6, X15 0.538
(f) X7, X8, X9, X10, X15 0.487
(g) (X7 - X8), (X9 - X10), X15 0.487
(h) X1, X2, X7, X8, X9, X10, X15 0.487
(i)** (X7, X8, X9, X10, X15)

2 0.488
(j)** (X1, X2, X7, X8, X9, X10, X13, X14 , X15)

2 0.488
(k)*** (X1, X2, X7, X8, X9, X10, X13, X14 , X15)

3 0.493
ˆ Games after March 1, in each of the 2002-2003 to 2012-2013 seasons
** all two-way interactions of these variables
*** all three-way interactions of these variables
Chosen model is highlighted

rating (fit (h)), and linear functions of team efficiency metrics (fit (g)), failed

to improve upon the log-loss score from fit (f). Higher order terms, as featured

in models (i), (j), and (k), resulted in worse log-loss performances on the test

data, and an ad-hoc approach using trial and error determined that there were

no interaction terms worth including.

The final model for M2 contained the parameter estimates from a lo-

gistic regression fit of game outcomes on X7, X8, X9, X10, and X15 (Adjusted

offensive efficiency for home and away teams, adjusted defensive efficiency for

home and away teams, and a neutral site indicator, respectively). We esti-

mated ŷm2
using the corresponding team specific metrics from kenpom.com,

taken immediately prior to the start of the 2014 tournament.



Our final step used ensembling, in which individually produced classi-

fiers are merged via a weighted average (Opitz and Maclin, 1999). Previous

work has shown that ensemble methods work best using accurate classifiers

which make errors in different input regions, because areas where one classi-

fier struggles would be offset by other classifiers (Hansen and Salamon, 1990).

While our two college basketball classifiers, M1 and M2, likely favor some of

the same teams, each one is produced using unique information, and it seems

plausible that each model would offset areas in which the other one struggles.

A preferred ensemble method takes the additional step of calculating

the optimal weights (Dietterich, 2000). Our chosen weights were based on

evidence that efficiency metrics were slightly more predictive of tournament

outcomes than the model based on spreads. Specifically, using a weighted

average of M1 and M2, we calculated a LogLoss score averaged over each

of the Division 1 tournaments between 2008 and 2013 (incidentally, this was

the ‘pre-test’ portion of the Kaggle contest). The balance yielding the best

LogLoss score gave a weight of 0.69 to M2 and 0.31 to M1.

Thus, we wanted one of our submissions to give more importance to

the efficiency model. However, given that each season’s efficiency metrics may

be biased because they are calculated after the tournament has concluded, for

our other entry, we reversed the weightings to generate our two submissions,

S1 and S2, rounding our weights for simplification.

S1 = 0.75 ∗ ŷm1
+ 0.25 ∗ ŷm2

S2 = 0.25 ∗ ŷm1
+ 0.75 ∗ ŷm2



The correlation between S1 and S2 was 0.94, and 78% of game predic-

tions on the two entries were within 0.10 of one another. Our top submission,

S2, finished in first place in the 2014 Kaggle contest with a score of 0.52951.

Submission S1, while not officially shown in the standings as it was our second

best entry, would have been good enough for fourth place (score of 0.54107).

4 Simulation Study

In order to evaluate the luck involved in winning a tournament pool with

probability entries, we performed a simulation study, assigning each entry a

LogLoss score at many different realizations of the 2014 NCAA basketball

tournament. The contest organizer provided each of the 433 submissions to

the 2014 Kaggle contest for this evaluation.

To simulate the tournament, “true” win probabilities must be specified

for each game. We evaluate tournament outcomes over five sets of true un-

derlying game probabilities: S1, S2, M(SAll), M(STop10), and 0.5, listed as

follows.

• Our first entry (S1)

• Our second entry (S2)

• Median of all Kaggle entries (M(SAll))

• Median of the top 10 Kaggle entries (M(STop10))

• All games were a coin flip (i.e. p = 0.5 for all games) (0.5)

Let rank(S1) and rank(S2) be vectors containing the ranks of each of

our submissions across the 10,000 simulations at a given set of game probabil-



ities. We are interested in the median rank and percentiles (2.5, 97.5) for each

submission (abbreviated as M (2.5 - 97.5)), across all simulations. We are also

interested in how often each submission finishes first and in the top 10.



Table 3: Simulation results

True Game Probabilities
Outcome Type S1 S2 M(STop10) M(SAll) 0.5

rank(S1) M (2.5 - 97.5) 11 (1-168) 59 (1-202) 99 (2-236) 145 (4-261) 264 (186-299)
rank(S2) M (2.5 - 97.5) 53 (2-205) 14 (1-164) 92 (2-245) 146 (5-266) 226 (135-285)
rank(S1) = 1 % 15.57 3.90 2.02 0.88 0
rank(S2) = 1 % 2.22 11.65 1.89 0.63 0
rank(S1) ≤ 10 % 48.79 17.69 8.85 5.04 0
rank(S2) ≤ 10 % 20.72 44.47 11.96 4.77 <0.01
Unique winners Total 332 336 337 348 217
M: Median, 2.5: 2.5th percentile, 97.5: 97.5th percentile



Lastly, we extract the number of unique winners across the simulations,

which can give us a sense of how many entries had a reasonable chance of

winning at each set of underlying game probabilities.

The results of the simulations appear in Table 3. Each column repre-

sents a different “true” probability scenario and each row records the results

of a statistic of interest. The first and second rows show results of our first and

second entry, respectively. We can see that if the “true” probabilities were S1,

our entry finished at a median of 11th place, whereas if the true probabilities

were S2, our median finish was 14th place. If the true probabilities were S1,

our entry containing those probabilities would finish in first place around 15%

of the time. Likewise, with S2 as “true” probabilities, that entry would win

around 12% of the time. Relative to a contest based entirely on luck, where

each entry would have a 1 in 433 chance of finishing first, our chances of win-

ning were roughly 50 to 60 times higher using S1 and S2 as the truth. This

conceivably represents the upper bound of our submission’s ‘skill.’

On the whole, our simulations indicated that the amount of luck re-

quired to win a contest like the Kaggle one is enormous; even if you knew the

true probabilities of a win for every single game with certainty, you’d still only

win about 1 in 8 times! In fact, even if our submissions were correct, we’d

only finish in the top 10 about 49% and 45% of the time, respectively, for S1

and S2.

If the median of all entries (M(SAll)) or the median of the top 10 entries

(M(STop10)) is used as the true probabilities, our chances of winning diminish.

For M(STop10), our chances of winning on entries S1 and S2 were both about



2%. For M(SAll), our chances of winning on entries S1 and S2 were both

less than 1%. Lastly, if each game was truly a coin flip, neither of our entries

finished first in any of the simulations.

Of the 433 total entries, fewer than 350 finished in first place at least

once in each of the simulations with our entries as the truth. This suggests that

if either of our submitted probabilities were close to the “true” probabilities,

about 20% of entries had little to no chance of winning.

Lastly, Figure 1 shows the smoothed density estimates (dark line) of all

winning LogLoss scores from 10,000 simulated tournaments under the game

probabilities in S2, along with the density estimates for S2 on simulations in

which that entry was the winner. The winning score of S2 in 2014 (0.529) is

shown by a vertical line. Relative to the simulated winning scores, S2 winning

scores have a lower density in the tails. The 2014 winning score was relatively

higher than most of the scores that won the simulated tournaments, perhaps

because the University of Connecticut, a seven seed, won all six of its games

en route to becoming Division 1 champions. Prior to Connecticut’s win, only

four previous champions since 1979 were seeded lower than three (four seed

Arizona (1997), six seeds Kansas (1988) and North Carolina (1983), and eight

seed Villanova (1985)). As a result, most predictive models would have a seven

seed as a substantial underdog in games against higher seeded opponents in

the later rounds, leading to comparatively larger values of the loss function

than when favorites prevail.



***********************Insert Figure 1 here***********************

Figure 1: Smoothed density estimates of winning scores across 10,000 tour-
nament simulations using underlying game probabilities S2. The dotted line
refers to the winning scores on simulations won by the S2 entry.

5 Conclusion

While traditional NCAA basketball tournament bracket pools are here to stay,

Kaggle has developed an alternative scoring system that requires a probability

prediction rather than simply picking a winner. Given these guidelines, we

used Las Vegas point spread data and Ken Pomeroy’s efficiency ratings to

build predictive models that ultimately led to a first place finish in this contest.

We employed logistic regression models, based, in part, on the fact

that the maximum likelihood estimates derived from logistic regression are

based on maximizing a function that was equivalent to the contest scoring

function. While logistic regression is a fairly standard statistical technique,

we propose that it was important in this context specifically because of the

scoring function.

While our choice of a class of models possibly played a role in our

victory, our choice of data likely played a much larger role. It is extremely

difficult to generate predictive models that outperform the Las Vegas point

spread, particularly in high profile games like the ones in the NCAA tourna-

ment, and both the point spread and efficiency ratings have previously been

shown to work well in predicting college basketball outcomes (Carlin, 1996).

Conceptually, one could argue that the Las Vegas point spread is a subjective



prior based on expert knowledge, whereas Pomeroy’s ratings are based entirely

on data. In this way, our ensembling of these two sources of data follows the

same principles as a Bayesian analysis.

Given the size of the Kaggle contest, it is reasonable to estimate that

our models increased our chances of winning anywhere from between five-fold

to fifty-fold, relative to a contest that just randomly picked a winner. However,

even with a good choice of models and useful data, we demonstrated that luck

also played a substantial role. Even in the best scenario where we assumed

that one of our predicted probabilities was correct, we found that this entry

had less than a 50% chance of finishing in the top ten and well less than a 20%

chance of winning, given a contest size of 433 entrants. Under different, but

fairly realistic true probability scenarios, our chances of winning decreased to

be less than 2%.
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